

Endogenous Regime Shifts in a New Keynesian Model with a Time-Varying Natural Rate of Interest

Kevin J. Lansing

Giovanni Ricco

University of Warwick

Applications of Behavioural Economics, and Multiple Equilibrium Models to Macroeconomic

Bank of England, London - 3-4 July 2017

► Decline of the natural real interest rate (Laubach and Williams, 2016, Del Negro et al, 2017, ...)

⇒ ZLB episodes are likely to be more frequent (Reifschneider and Williams, 2000)

 NK 'Standard Model' has two steady states: targeted equilibrium (TE), deflation equilibrium (DE) (Benhabib, Schmitt-Grohé and Uribe, 2001a,b)

 \mathfrak{D} :

This paper:

- Stochastic two regime NK model (Arouba, Schorfheide, 2016)
 - ① ... with time-varying natural rate of interest...
 - 2 ... and endogenous regime switching

© : 3/20

This paper:

- Stochastic two regime NK model (Arouba, Schorfheide, 2016)
 - ① ... with time-varying natural rate of interest...
 - 2 ... and endogenous regime switching

The mechanism:

► Agent uses weighted-average of the forecasts for **TE** and **DE**

9: 3/20

This paper:

- Stochastic two regime NK model (Arouba, Schorfheide, 2016)
 - ① ... with time-varying natural rate of interest...
 - 2 ... and endogenous regime switching

The mechanism:

- Agent uses weighted-average of the forecasts for TE and DE
- Weights are determined by recent RMSE for inflation and the output gap (8 quarters)

9: 3/20

This paper:

- Stochastic two regime NK model (Arouba, Schorfheide, 2016)
 - ① ... with time-varying natural rate of interest...
 - 2 ... and endogenous regime switching

The mechanism:

- Agent uses weighted-average of the forecasts for TE and DE
- Weights are determined by recent RMSE for inflation and the output gap (8 quarters)
- Large shocks can push the economy at the ZLB

© : 3/20

This paper:

- Stochastic two regime NK model (Arouba, Schorfheide, 2016)
 - ① ... with time-varying natural rate of interest...
 - 2 ... and endogenous regime switching

The mechanism:

- Agent uses weighted-average of the forecasts for TE and DE
- Weights are determined by recent RMSE for inflation and the output gap (8 quarters)
- Large shocks can push the economy at the ZLB
- Agent places higher probability on the deflation equilibrium self-fulfilling

 \mathfrak{I} : 3/20

This paper:

- Stochastic two regime NK model (Arouba, Schorfheide, 2016)
 - ① ... with time-varying natural rate of interest...
 - ② ... and endogenous regime switching

The mechanism:

- Agent uses weighted-average of the forecasts for TE and DE
- Weights are determined by recent RMSE for inflation and the output gap (8 quarters)
- Large shocks can push the economy at the ZLB
- Agent places higher probability on the deflation equilibrium self-fulfilling
- Even outside ZLB the agent can assign a nontrivial probability to the deflation equilibrium

 \mathfrak{I} : 3/20

This paper:

- ▶ Nice, neat, thoughtful paper!
- Great tool to assess (the limits) our understanding of the last few years at the ZLB through the lenses of a simple NK model

9:

This paper:

- ▶ Nice, neat, thoughtful paper!
- Great tool to assess (the limits) our understanding of the last few years at the ZLB through the lenses of a simple NK model

This discussion:

- ▶ Is it a good description of the US economy?
- Is a standard NK model the right framework?

© : 4/20

Deflationary equilibrium

- ► Targeted equilibrium: inflation on the target, nominal interest rates are positive
- ► **Deflation equilibrium:** nominal interest rates are zero and inflation rates are (usually) negative

Table 1. Long-run Endpoints

Targeted equilibrium	Deflation equilibrium
$\pi_t = \pi^*$	$\pi_t = -r_t^*$
$y_t = y^* \equiv \pi^* \left(1 - \beta \right) / \kappa$	$y_t = -r_t^* \left(1 - \beta \right) / \kappa$
$i_t^* = r_t^* + \pi^*$	$i_t^* = (r_t^* + \pi^*) [1 - g_{\pi} - g_y (1 - \beta) / \kappa]$
$i_t = r_t^* + \pi^*$	$i_t = 0$

5/20

Deflationary equilibrium

: 6/20

Missing disinflation?

7/20

Missing disinflation?

: 8/20

How low is the real natural interest rate?

William (2017)

9/20

How low is the real natural interest rate?

Laubach and Williams, 2016

Why is $r^* < 0$?

"With core inflation remaining surprisingly stable in the face of sharp declines of real GDP below the trend [...], the model assigned some of the unexpected output declines to the output gap, but also a large share to declines in potential output and its trend growth rate. [...]

 \mathfrak{D} :

How low is the real natural interest rate?

Laubach and Williams, 2016

Why is $r^* < 0$?

"With core inflation remaining surprisingly stable in the face of sharp declines of real GDP below the trend [...], the model assigned some of the unexpected output declines to the output gap, but also a large share to declines in potential output and its trend growth rate. [...]

While the output gap began to narrow gradually beginning in mid-2009, [...] the IS curve, would have predicted a much faster return of the output gap to zero if the estimate of r^* had remained at its pre-recession value near 2 percent. [...] The (one-sided) estimate of r^* therefore fell rapidly to 0.5 percent in mid-2009, and then continued to decline to around zero by the end of 2010, cutting the implied real rate gap to about -0.5 percent. "

 \mathfrak{D} :

Did inflation expectations shift?

: 11/20

Did inflation expectations shift?

12/20

Did inflation expectations shift?

Universal consensus term structure of expectations - Crump et al (2017)

: 13800 1985 1980 1985 2000 2005 2010 2015 2020 2025 2030 133/20

Bimodal or divergent expectations?

- Sudden shifts of expectations?
- Implication of the model representative agent has a bimodal forecast distribution
- ▶ Is there any evidence of this? Look at aggregate uncertainty in SPF inflation forecast (bins).
- ► Maybe disagreement in population?

© : 14/20

Disagreement about the steady state?

: 15/20

How would the model fit the data?

Arouba et al (2016)

16/20

What was different in the Great Recession?

Conditional projections (Bańbura et al, 2015):

- ► Think of data as Y's and Z's
- The object of interest is the density of future Y's conditional on past Y's and Z's as well as on future Z's
- ► E.g. given past recessions, what inflation would we have forecast in 2008Q1 if we had known the subsequent paths of GDP?
- ▶ If the actual data different from the forecast ⇒ the actual data are 'unusual' (what modellers may want to focus on)

© : 17/20

Spot the differences?!

: 18/20

① MSV solution – is this the right one? DE is locally indeterminate! Sunspots...

9:

- ① MSV solution is this the right one? DE is locally indeterminate! Sunspots...
- 2 Agent ignores the global structure of the economy

© : 19/20

- ① MSV solution is this the right one? DE is locally indeterminate! Sunspots...
- ② Agent ignores the global structure of the economy
- ③ Is a mixed expectation equilibrium an equilibrium?! Transitional dynamics

© : 19/20

- ① MSV solution is this the right one? DE is locally indeterminate! Sunspots...
- 2 Agent ignores the global structure of the economy
- ③ Is a mixed expectation equilibrium an equilibrium?! Transitional dynamics
- 4 Agent only assesses last two years

 \mathfrak{I}_{-} : 19/20

- ① MSV solution is this the right one? DE is locally indeterminate! Sunspots...
- 2 Agent ignores the global structure of the economy
- ③ Is a mixed expectation equilibrium an equilibrium?! Transitional dynamics
- 4 Agent only assesses last two years
- (5) Agent and the CB entertain the same expectations

© : 19/20

- ① MSV solution is this the right one? DE is locally indeterminate! Sunspots...
- 2 Agent ignores the global structure of the economy
- ③ Is a mixed expectation equilibrium an equilibrium?! Transitional dynamics
- 4 Agent only assesses last two years
- Solution is a second of the first of the same expectations.
 Solution is a second of the first of th
- 6 No role for the CB in coordinating and managing expectations

© : 19/20

- ① MSV solution is this the right one? DE is locally indeterminate! Sunspots...
- ② Agent ignores the global structure of the economy
- ③ Is a mixed expectation equilibrium an equilibrium?! Transitional dynamics
- 4 Agent only assesses last two years
- Solution is a second of the first of the same expectations.
 Solution is a second of the first of th
- 6 No role for the CB in coordinating and managing expectations
- \bigcirc Path of r^* is assumed

 \mathfrak{I}_{-} : 19/20

- ① MSV solution is this the right one? DE is locally indeterminate! Sunspots...
- 2 Agent ignores the global structure of the economy
- ③ Is a mixed expectation equilibrium an equilibrium?! Transitional dynamics
- 4 Agent only assesses last two years
- Solution is a second of the first of the same expectations.
 Solution is a second of the first of th
- 6 No role for the CB in coordinating and managing expectations
- \bigcirc Path of r^* is assumed
- $\ \ \,$ Not fully consisted with Laubach, Williams model for r^*

© : 19/20

Conclusions

► The U.S. seem to have remained in the targeted-inflation regime throughout the sample period (Arouba et al 2014)

Maybe a good model for Japan?

 \mathfrak{D} : 20/20

Conclusions

- ► The U.S. seem to have remained in the targeted-inflation regime throughout the sample period (Arouba et al 2014)
- ► Maybe a good model for Japan?

Open Questions:

- Is the standard NK model the right framework?
- ▶ How should we model the expectation formation?
- ▶ How to model the macro-financial interaction?
- ► Are the decline of the natural interest rate and the Great Recession just separate albeit interacting phenomena?

 \mathfrak{D} : 20/20