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1 Introduction

A central endeavour in empirical macroeconomics is the study of the dynamic causal

effects that structural shocks have on macroeconomic variables. Since Sims (1980),

this has been typically accomplished by employing Structural VARs (SVARs). An

almost always maintained assumption in the SVAR literature is that of ‘fundamen-

talness’, or ‘invertibility’ of the structural shocks, given the chosen model. If this

assumption holds, all the structural shocks can be recovered from the current and

lagged values of the observables included in the VAR. Under invertibility, the VAR

innovations are a linear combination of the structural shocks and, given the variance-

covariance matrix of the residuals, the causal relationships are identified up to an

orthogonal matrix that defines the contemporaneous relationships. A lot of creativity

in the SVAR literature has been devoted to the formulation of appropriate identifying

assumptions to inform the choice of this orthogonal matrix. The structural moving

average, obtained by inverting the identified SVAR, allows inference on the dynamic

causal effects of the structural shocks, represented in the form of impulse response

functions (IRFs).

In contrast with standard statistical identifications, an important advancement

in the more recent practice has seen the adoption of external instruments for the

identification of structural shocks.1 These instruments – that can be thought of

as noisy observations of the shocks of interest –, can be used either in conjunction

with Structural VARs (SVAR-IV, also called Proxy-VARs), or with direct regression

methods, such as Jordà (2005)’s Local Projections (LP-IV with or without controls).

The assumption of invertibility, however, is still required both in SVAR-IV and LP-

IV with controls for the system to be fully identified (see discussion in Stock and
1This rapidly expanding research programme, surveyed in Ramey (2016), has produced, among

other applications, a number of instruments for the identification of monetary policy (e.g. Romer
and Romer, 2004; Gürkaynak et al., 2005; Gertler and Karadi, 2015; Miranda-Agrippino and Ricco,
2017; Paul, 2017), fiscal spending (e.g. Ramey, 2011; Ricco et al., 2016; Ramey and Zubairy, 2018),
tax (e.g. Romer and Romer, 2010; Leeper et al., 2013; Mertens and Ravn, 2012), government asset
purchases (Fieldhouse and Mertens, 2017; Fieldhouse et al., 2018), oil (e.g. Hamilton, 2003; Kilian,
2008), and technology news shocks (e.g. Miranda-Agrippino et al., 2018).
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Watson, 2018).2

This paper discusses the conditions for identification with external instruments in

Structural VARs under the assumption of partial invertibility of the shock of interest.

This is the empirically relevant case in which the researcher is only interested in

‘partially’ identifying the system, that is, in estimating the dynamic effects of just

one (or a subset) of the structural shocks that can be assumed to be recoverable from

the VAR residuals.

We show that, in general, fairly weak conditions are required to achieve identifi-

cation. In particular, under partial invertibility, other than the standard relevance

and contemporaneous exogeneity conditions, the instrument has to fulfil a limited

lead-lag exogeneity condition. This ensures that the VAR innovations and the in-

strument are related only via the structural shock of interest. Hence, the instrument

can be contaminated by leads and lags of other partially invertible shocks, while

still achieving correct identification. Our results allow to extend the application of

SVAR-IV (and LP-IV with controls) methods to the many empirically relevant cases

in which the shock of interest is arguably invertible, while some of the other structural

disturbances may be non-invertible.3

We make three contributions. First, we show that under partial invertibility a

covariance-stationary stochastic vector process admits a ‘semi-structural’ represen-

tation that is the sum of two terms, orthogonal to one another. The first one only

depends on the current realisations of the partially invertible shocks. The second

instead combines leads and lags of the remaining non-invertible shocks. This result
2Stock and Watson (2018) observe that direct methods, such as local projections, do not need

to explicitly assume invertibility of the system under strict exogeneity of the instrument at all leads
and lags. However, if lagged observables are required as control variables for an instrument that
violates the lead-lag exogeneity condition, then, in general, the same invertibility conditions of a
structural VAR are required.

3Our results are a generalisation of the special case in which the shock of interest is observed
without error (i.e. the instrument is the shock), discussed in Stock and Watson (2018). In this
case, they note, the assumption of invertibility can be dispensed with for the validity of SVAR-
IV. Intuitively, if the instrument perfectly reveals the shock, the dynamic causal effects can be
consistently estimated by a distributed lag regression of the variables of interest on the observed
shock.
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implies that if the VAR lag order correctly captures the autocorrelation structure of

the Wold representation, the impulse response functions obtained from the partially

identified structural moving average are the dynamic causal effects of the shock of

interest.

Second, we show that under partial invertibility SVAR-IV methods (and LP-IV

with controls) achieve identification under much weaker conditions on the external

instrument than LP-IV methods without controls. Intuitively, for partially invertible

SVAR-IVs, it is enough to assume that the instrument correlates with the VAR resid-

uals only via the shock of interest. Hence, the semi-structural representation implies

that the instrument can be contaminated by leads or lags (but not contemporaneous

realisations) of any of the other partial-invertible shocks in the system. We call this

requirement a limited lead-lag exogeneity condition.

Third, we discuss the empirically likely case in which the VAR is misspecified along

some dimensions – e.g. inappropriate lag order, missing moving average components,

missing variables, and missing higher order terms –, and hence fails to correctly

capture the data generating process. While in this case the dynamic responses will

generally be biased, if one can still assume that the shock of interest is partially

invertible, the impact effects are correctly identified. This provides a simple way to

gauge the contamination of an instrument versus the misspecification of the chosen

model. If one can assume partial invertibility across different specifications of an

empirical model, an instrument that fulfils the conditions for identification delivers

stable impact responses but unstable IRFs across models. In this case, increasing

the number of lags and/or using a larger information set should help stabilising the

dynamics responses by providing a better approximation of the Wold representation.

Conversely, an instrument that violates the lead-lag exogeneity condition is likely to

deliver unstable impact responses across different models.

We provide an application of our results using artificial data from a stylised stan-

dard New-Keynesian DSGE model with price stickiness and four shocks – monetary
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policy, government spending, technology, and an inflation-specific shock. The system

is by construction partially invertible in the monetary policy – i.e. the residuals of the

Taylor rule. However, due to the introduction of technology news (see e.g. Beaudry

and Portier, 2006; Barsky and Sims, 2011), and fiscal foresight (see Ramey, 2011;

Leeper et al., 2013), a VAR in output growth, inflation, government spending and

the policy interest rate fails the ‘poor man’s invertibility condition’ of Fernandez-

Villaverde et al. (2007), and is hence unable to recover all the four shocks. We use

this simulated environment to study the identification of monetary policy shocks with

external instruments. Our results validate our discussion. Under partial invertibility,

an instrument contaminated by leads or lags of an invertible shocks correctly recover

impacts and dynamic responses to the shock of interest, provided that the VAR is

correctly specified. If, instead, the instrument is contaminated by a non-invertible

shock, the degree of distortion in the estimated IRFs depends on how pervasive the

shock is, that is, on how much of the variance in the system it accounts for.

Lastly, we provide an empirical application of our results by examining popular

instruments for the identification of monetary policy shocks in a monthly VAR for US

data. We consider three variants of the high-frequency instruments popularised by

Gürkaynak et al. (2005) to identify monetary policy shocks. We show that two of these

are likely to fail the limited lead-lag exogeneity condition, and hence they recover

impact responses of output and prices that are strongly dependent on the model

specification and composition. The third instrument, constructed as in Miranda-

Agrippino and Ricco (2017) with a pre-whitening step to remove correlation with

other shocks, recovers impact responses that are invariant to the VAR specification.

This paper builds and expands on the econometric literature supporting the use

of IV in macroeconomics. The SVAR-IV techniques were first introduced by Stock

(2008), and then explored in Stock and Watson (2012) and Mertens and Ravn (2013).

The use of instrumental variables for identification in direct regressions (LP-IV), with

or without controls, has been proposed independently by Jordà et al. (2015) and
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Ramey and Zubairy (2018). The econometric conditions for instruments validity in

the direct regression without control variables have first appeared in lecture notes by

Mertens (2014). Stock and Watson (2018) have recently provided a unified discus-

sion of the use of external instruments in macroeconomics, discussed the conditions

for instruments validity with control variables and relation to full invertibility, and

explored the connections between the SVAR-IV and LP-IV methods.4

This paper is close in spirit to Forni et al. (2018) – which expands on the approach

proposed by Giannone and Reichlin (2006) and results in Forni and Gambetti (2014)

–, and studies the conditions under which a SVAR is informative enough to estimate

the dynamic effects of a shock. While we share the emphasis on partial invertibility

(referred to in Forni et al. 2018 as informational sufficiency), our paper focuses on

the recent debate on the use of IV in empirical macro, and on its interaction with

misspecifications in the modelling choices.

The paper is organised as follows. In Section 2 we review the concepts of invert-

ibility and fundamentalness and some other useful results in the literature; a reader

familiar with these concepts can skip the section. Sections 3 an 4 collect our main

results. Here we discuss partial identification, and how this allows for semi-structural

representations of covariance-stationary vector processes, and lay out the conditions

for the identification of structural shocks in SVAR-IV under partial invertibility of

the shock of interest. In Section 5 we analyse the case of misspecified systems. We

apply the concept discussed in this paper using artificial data from a NK-DSGE in

Sections 6 and an empirical application in Section 7. Finally, Section 8 concludes.

2 Non-Fundamental Representations

To introduce the concept of non-fundamentalness, let us consider a covariance-stationary

n × 1 vector stochastic process Yt, for t ∈ Z, with rational spectral density and be-
4Plagborg-Møller and Wolf (2018) discuss the connection between IRF estimated with VARs and

LP methods.
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longing to a Hilbert space L2(Ω,F , P ) for some probability space (Ω,F , P ).5 We

define the Hilbert space generated by all the observations of Yt up to time t as

HY
t = span{Yt−j, j ≥ 0}. The process Yt is a linear process and a VARMA(p,q) if it

is a stationary solution of the stochastic difference equation

Φ(L)Yt = Ψ(L)ut ut ∼ WN (0,Σu) , (1)

where Φ(L) and Ψ(L) are generic autoregressive (AR) and moving average (MA)

filters of order p and q respectively

Φ(L) =

p∑
i=0

ΦiL
i , Ψ(L) =

q∑
i=0

ΨiL
i, (2)

and ut are the stochastic disturbances of the data generating process (i.e. the ‘struc-

tural shocks’ in the economic jargon), generally assumed to be orthogonal or or-

thonormal processes. If the process is causal – i.e., det(Φ(L)) has all roots outside

the unit circle, det(Φ(z)) 6= 0 ∀z = ζi such that |ζi| < 1 –, then it can be written as

a (possibly infinite) MA in the structural shocks ut

Yt = Θ(L)ut, ut ∼ WN (0,Σu). (3)

Definition 1. (Invertibility and Fundamentalness) Let Yt be defined as in Eq.

(1), and with structural MA representation as in Eq. (3).

(i) If det(Ψ(z)) – and hence det(Θ(z)) – has all roots outside the unit circle, i.e.

det(Θ(z)) 6= 0, ∀z = ζi s.t. |ζi| < 1, (4)
5In the economic literature, the issue of non-fundamentalness (see Rozanov, 1967; Hannan, 1970)

was first pointed out by Hansen and Sargent (1980, 1991) in a purely theoretical setting, while
Lippi and Reichlin (1993, 1994) provided the first empirical application. Other more recent contri-
butions on fundamentalness in macro models are in Chari et al. (2004), Christiano et al. (2007) and
Fernandez-Villaverde et al. (2007). A useful review is in Alessi et al. (2011).
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then the process in Eq. (1) is said to be invertible, and ut are said to be Yt-

fundamental (i.e. HY
t = Hu

t and the stochastic disturbances can be recovered

from current and past realisation of the process Yt). Yt can be written in VAR

form as

A(L)Yt = Θ0ut , (5)

where Θ0 is an n-dimensional matrix.

(ii) If det(Θ(z)) has at least one root inside the unit circle, then the process in Eq.

(1) is ‘non-invertible’, and ut is said to be Yt–non-fundamental (i.e. HY
t ⊂ Hu

t ).

(iii) If det(Θ(L)) has at least one root on the unit circle, the process is said to be

non-invertibile, but ut are Yt-fundamental (HY
t = Hu

t ).

The Wold Representation Theorem guarantees that Yt always admits a Wold

decomposition of the form

Yt = ηt + C(L)νt νt ∼ WN (0,Σν), (6)

where C(L) =
∑

j CjL
j is a causal (i.e. no terms with Cj 6= 0 for j < 0), time-

independent, square summable filter with C0 = In and ηt is a deterministic term that,

without loss of generality, we will disregard in the following in order to focus on purely

non-deterministic processes. νt is the Wold innovation process – an uncorrelated

sequence – to Yt

νt = Yt − Proj(Yt|Yt−1, Yt−2, . . . ) , (7)

that, by definition, belongs to the space generated by present and past values of Yt

(i.e. Hν
t = HY

t , since we are assuming Yt to be a purely non-deterministic process).

Given the invertibility of C(L), we can rewrite Eq. (6) in a VAR form

A(L)Yt = νt A0 = In . (8)
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If the Wold representation has absolute summable coefficients, then it admits a VAR

representation with coefficient matrices that decay to zero rapidly; hence, it can be

well approximated by a finite order VAR process. This is always the case for causal

finite-order ARMA processes.

If the structural shocks ut are Yt–fundamental, then ut and νt generate the same

space (Hu
t = Hν

t , ∀t). This implies that

νt = Θ0ut , (9)

where Θ0 is non-singular. Hence, the structural disturbances ut can be determined

from current and lagged values of Yt

ut = Proj(ut|Yt, Yt−1, . . . ) . (10)

If, however, the process is not invertible, and ut is not Yt–fundamental, the space

generated by the VAR innovations does not coincide with that spanned by the struc-

tural shocks, i.e. Hν
t ⊂ Hu

t . The following result guarantees that the Wold and the

structural MA representations (Eq. 3) are connected by a class of transformations

generated by means of Blaschke matrices.

Theorem 1. Let Yt be a covariance-stationary vector process with rational spectral

density, i.e. an ARMA process. Let Yt = C(L)νt be a fundamental representation of

Yt, i.e.

(i) νt is a white noise vector;

(ii) C(L) is a matrix of rational functions in L with no poles of modulus smaller or

equal to unity (Causality);

(iii) det(C(L)) has no roots of modulus smaller than unity (Invertibility).

Let Yt = Θ(L)ut be any other MA representation, i.e. one which fulfils (i), and (ii),
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but not necessarily (iii). Then

C(L) = Θ(L)B(L) ,

where B(L) is a Blaschke matrix.

Blaschke matrices are filters capable to flip the roots of a fundamental repre-

sentation inside the unit circle (see Lippi and Reichlin, 1994). A complex-valued

matrix B(z) is a Blaschke matrix if: (i) It has no poles inside the unit circle; (ii)

B(z)−1 = B∗
′
(z−1), where ∗ indicates the complex conjugation.6 The following result

guarantees that any Blaschke matrix can be written as the product of orthogonal

matrices, and matrices with a Blaschke factor as one of their entries.

Theorem 2. Let B(z) be an n× n Blaschke matrix, then ∃m ∈ N and ∃ ζi ∈ C for

i = 1, . . . ,m such that

B(z) =
m∏
i=1

K(ζi, L)Ri , (11)

where Ri are orthogonal matrices, i.e. RiR
′
i = In, and

K(ζi, L) =

In−1 0

0
z − ζi

1− ζ∗i z

 , (12)

are matrices with a Blaschke factor as one of the entries.

The above results indicate that in general we can connect the structural and the

Wold representation using a Blaschke matrix B(L), that is

Yt = Θ(L)ut = Θ(L)B(L)−1B(L)ut = C(L)νt, (13)

where B(L) flips the roots of the Wold fundamental representation inside the unit
6See Lippi and Reichlin (1994) for a proof of Theorems 1 and 2.
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circle to obtain the structural MA. Hence,

νt = Θ0B(L)ut . (14)

In the case in which the structural representation is invertible, B(L) is just the

product of the orthogonal matrices Ri.7

It is important to observe that, as it is clear from Eqs. (11-12), Blaschke factors

may be acting only on a subset of the shocks. The remaining shocks can be recov-

ered from current and past realisations of the variables, and are said to be partially

invertible. We discuss this relevant case in the next section.

3 Partial Invertibility

The property of invertibility guarantees identifiability of all the structural distur-

bances of a correctly specified VAR. In such a case, the problem of identification

amounts to finding the correct matrix Θ0 that connects the VAR residuals to the

structural shocks as in Eq. (9). However, phenomena such as anticipation and fore-

sight of economic shocks, which are often a feature of rational expectation models,

can generate non-invertible representations (see e.g. Leeper et al., 2013). In such

cases, the search for the correct Blaschke matrix can be a daunting problem (see

Lippi and Reichlin, 1994).

In most empirical applications, however, often only a subset of the structural

innovations is of interest. For example, one may want to identify only a monetary

policy shock, or an oil price shock. This is the case of ‘partial identification’, when

only a subset of the column entries of the matrix polynomial Θ0B(L) that maps the

Wold residuals into the structural shocks is of interest. In such a setting, the relevant

condition is that of partial invertibility of the subset of the shocks of interest.
7Amatrix Ri is an orthogonal matrix if its transpose is equal to its inverse, i.e. R′iRi = RiR

′
i = In.

The group O(n) of the n×n orthogonal matrices is spanned by n(n− 1)/2 unrestricted parameters.
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Definition 2. (Partial Invertibility) Let Yt be a covariance-stationary n× 1 vec-

tor stochastic process, with rational spectral density, solution to the ARMA equation

Φ(L)Yt = Ψ(L)ut, where ut is a n × 1 vector of stochastic disturbances (structural

shocks) ut ∼ WN (0,Σu). Yt admits a Wold representation of the form Yt = C(L)νt

for a vector of innovations νt ∼ WN (0,Σν). A structural shock uit ∈ ut is invertible

and Yt–fundamental if

uit = Proj(uit|Yt, Yt−1, . . . ) . (15)

Hence, uit is a linear combination of the innovations νt, that is, there exist an n-

dimensional unit norm vector λ, with λλ′ = 1, such that

κuit = λ′νt , (16)

where κ is a constant of proportionality.

Under partial invertibility, a straightforward application of Theorem 2 guarantees

that Eq. (14) reads

νt = Θ0B(L)ut = B̃(L)ut = [b̃1 b̃2(L)]ut , (17)

where b̃1 is a n×m matrix, and b̃2(L) is a matrix polynomial of dimensions n×(n−m)

obtained as a combination of Blaschke factors and orthogonal transformations, where

m is the number of partially invertible shocks.

Proposition 1. (Semi-structural Moving Average Representation) Let the

covariance stationary vector process Yt be a solution to

Φ(L)Yt = Ψ(L)ut ut ∼ WN (0,Σu) , (18)

and let Ψ(L) be a non-invertible moving average filter, i.e. det(Ψ(z)) = 0 for some
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ζi such that |ζi| < 1. Let the Wold representation of Yt be equal to

Yt = C(L)νt νt ∼ WN (0,Σν). (19)

If the system is partially invertible in a shock uit for some i ∈ n, viz. exists a unit-

norm vector λ such that λ′ν = κuit, then Yt admits a semi-structural moving average

representation of the form

Yt = κC(L)λuit + C(L)λ̃ξt , (20)

where λ̃ is such that λ̃′λ = 0(n−1)×1, λ̃′λ̃ = In−1 and E(uitξ
′
t) = 0.

Proof. Let us consider a non singular matrix

Λ′ =

λ′
λ̃′

 (21)

such that λ̃′λ = 0(n−1)×1, and λ̃′λ̃ = In−1.8 Λ is an orthogonal matrix, Λ′Λ = ΛΛ′ =

In.9 Also,

Λ′νt =

λ′
λ̃′

 νt =

κuit
ξt

 . (22)

8It is possible to constructively obtain a non-singular matrix Λ by observing that since λ is
normalised to be of unitary norm, it can be thought of as the first column of an orthogonal matrix.
λ̃ has to live in the orthogonal complement subspace of Rn of the space defined by λ. This space is
spanned by a generic basis of n− 1 independent vectors of norm one, orthogonal to λ. Any such a
base can be used as column vectors of λ̃. Λ is then non-singular, and an orthogonal matrix.

9This follows trivially from the assumptions on the sub-matrices λ and λ̃ and the choice of a
non-singular Λ. First, observe that

Λ′Λ =

(
λ′

λ̃′

)(
λ λ̃

)
=

(
λ′λ λ′λ̃

λ̃′λ λ̃′λ̃

)
=

(
1 01×(n−1)

0(n−1)×1 In−1

)
= In.

This also implies

In =
(
λ λ̃

) (
λ λ̃

)−1(λ′
λ̃′

)−1(
λ′

λ̃′

)
=
(
λ λ̃

)((λ′
λ̃′

)(
λ λ̃

))−1(λ′
λ̃′

)
=
(
λ λ̃

)(λ′
λ̃′

)
= ΛΛ′.
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ξt ≡ λ̃′νt is a combination of structural shocks, and is orthogonal to uit at different

lags and leads, i.e. ξ′tuit = (λ̃′νt)
′uit ∝ (λ̃′νt)

′λ′νt = ν ′tλ̃λ
′νt = 0.

Let us consider the representation obtained by acting with Λ on the reduced form

VAR representation in Eq. (8)

Λ′A(L)Yt = Λ′νt . (23)

Eq. (23) is a ‘partially’ identified SVAR of the form

Λ′Yt =
k∑
j=1

Λ′AjYt−j +

κuit
ξt

 . (24)

A partially-identified MA is obtained by pre-multiplying Eq. (23) for A(L)−1Λ−1,

where Λ−1 = Λ =
(
λ λ̃

)
, to get

Yt = C(L)
(
λ λ̃

)κuit
ξt

 = κC(L)λuit + C(L)λ̃ξt . (25)

A few observations are in order. First, Eq. (25) implies that the Wold moving

average can be factorised into two terms. The first one depends on the invertible

shock uit, and the second one is a function of the n − 1 linear combinations of the

Wold innovations orthogonal to uit. It is worth noticing that while the requirement

that ξt and uit are orthogonal is important, we do not require ξt to span the space of

all the shocks orthogonal to uit.

Second, the above result implies that if the VAR has a correctly specified lag order,

under partial invertibility the ‘partially’ identified SVAR impulse response functions

are the dynamic causal effects to the identified shock uit.

Third, the argument above can be readily extended to λ of dimension n×m for

m < n. In fact, Proposition 1 readily generalises to the case of m partially invertible
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structural shocks, for m > 1. In such a case, the first term of the semi-structural

Wold moving average depends on the m partially invertible shocks, and the second

is a linear combination of the lags and leads of the remaining n−m shocks.

4 IV Identification under Partial Invertibility

Let us consider a partially invertible VAR with reduced form representation as in Eq.

(8), repeated below for convenience

A(L)Yt = νt A0 = In . (8)

Given an external instrument zt, it is possible to identify u1t and its effects on

Yt+h, h = 0, . . . , H, under the set of conditions in the following proposition.

Proposition 2. Identification in SVAR-IV under Partial Invertibility Let zt

be an instrument for the shock u1t that satisfies the following conditions:

(i) E[u1t z
′
t] = α (Relevance)

(ii) E[u2:nt z′t] = 0 (Contemporaneous Exogeneity)

(iii) E[ukt+jz
′
t] = 0 for all j 6= 0 and k 6= 1 such that E[ukt+jν

′
t] 6= 0. (Limited

Lead-Lag Exogeneity)

The impact effect λ of u1t onto Yt is identified (up to a scale) as

λ ∝ E[νtz
′
t].

Proof. Let u1t be a partially invertible structural shock such that Yt = κC(L)λu1t +

C(L)λ̃ξt, where ξt is a linear combination of leads and lags of the remaining (n− 1)

structural shocks u2:nt , some of which may be non-invertible, and λ, λ̃ are defined as
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in Proposition 1. Conditions (i) to (iii) imply that

E[νtz
′
t] = E

(λ λ̃
)κu1t

ξt

 z′t

 =
(
λ λ̃

)κE[u1t z
′
t]

E[ξtz
′
t]

 = ακλ .

The above conditions (i) and (ii) are the conventional relevance and exogene-

ity conditions for instrumental variables (IV) that are standard in the micro and

macro literatures (see Stock and Watson, 2018). Condition (iii) arises because of

the dynamics, and it requires that if there are any non-invertible shocks, they do not

correlate with the instrument at any leads and lags. Conversely, leads and lags (but

not contemporaneous values) of other partial invertible shocks can contaminate the

instrument without compromising the identification of λ.

If the system is invertible and the VAR correctly captures the data generating

process of Yt, then the third condition is trivially satisfied, since νt are a linear

combination only of the contemporaneous structural shocks ut. Conversely, when all

the remaining shocks are non-invertible, Condition (iii) implies a stronger lead-lag

exogeneity condition (i.e. E[ukt+jz
′
t] = 0 for all j 6= 0 and for all k 6= 1) that applies

to all the shocks but the partially invertible one.

In the more general case in which only some of the remaining shocks are non-

invertible, Proposition 2 ensures that identification with an external instrument is

possible as long as the instrument is contaminated only by the past and future re-

alisations of the invertible shocks. These are the shocks that do not enter the VAR

innovations νt.

Condition (iii) is a relatively stronger condition than that required for a well spec-

ified and fully invertible SVAR (where lead-lag exogeneity is not required), but still

a much weaker one than the lead-lag exogeneity condition required for identification

in direct regressions and LP-IV.

When Condition (iii) is violated, the instrument is contaminated by leads and/or
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lags of some of the non-invertible shocks. This results in a bias in the estimated

impulse response functions; we formalise this observation in the following remark.

Remark 1. (Violation of the Exogeneity Condition) Let zt be an instrument

for a partially invertible shock u1t that satisfies Condition (i) but fails Condition (ii)

and Condition (iii) of Proposition 2, due to contamination by lags, leads or contem-

poraneous realisations of a non-invertible shock u�1t , i.e.

zt = αu1t +
∑
k

βku�
1
t−k , (26)

for k ∈ Z. Given a well specified VAR, the innovations of the Wold representation

can be mapped into the structural shocks as

νt = (b(1) b(2)(L))ut , (27)

where b(1) is a n × 1 matrix and b(2)(L) is a n × (n − 1) matrix lag polynomial

that incorporates Blaschke factors, due to the presence of non-invertible shocks. The

estimated IRFs for variable i, to shock 1, at horizon h, are biased and of the form

ĨRF
h

i1 = IRF h
i1 +

[
Ch
∑
j

∑
k

b
(2)

j,�1

βk
α
δjk

]
i

, (28)

where IRF h
i1 are the IRFs at horizon h to the shock u1t and the second term is a bias.

Ch are the matrix coefficients of the Wold representation at lag h, and b(2)
j,�1

is the �1

column of the matrix of coefficients of the polynomial at lag j. δjk is the Kronecker’s

delta.

Proof. Given a well specified VAR, the Wold representation is

Yt = C(L)νt , (29)

17



and the semi-structural moving average representation is of the form

Yt = κC(L)λuit + C(L)λ̃ξt . (30)

We can write the Wold residuals as

νt = (κλ λ̃)

u1t
ξt

 =
(
b(1) b(2)(L)

)
ut (31)

where b(1) is a n × 1 matrix and b(2)(L) is a n × (n − 1) matrix lag polynomial that

incorporate Blaschke factors, due to the presence of non-invertible shocks. In this

case

E[νtz
′
t] = E

(λ λ̃
)κu1t

ξt

 z′t

 =
(
λ λ̃

)κE[u1t z
′
t]

E[ξtz
′
t]

 = b(1) +
∑
j

∑
k

b
(2)

j,�1
βkδjk ,

where the Kronecker’s delta singles out the common lags in u�1t between the instrument

and the column �1 of the matrix lag polynomial b(2)(L). By normalising for the

coefficient of correlation α and multiplying for the matrix Ch of lag h of the Wold

representation one finds

ĨRF
h

i1 =

[
Chb

(1) + Ch
∑
j

∑
k

b
(2)

j,�1

βk
α
δjk

]
i

,

which is the expression in Eq. (28).

A few elements of Eq. (28) are worth highlighting. First, all else equal, the amount

of bias in the estimated IRFs depends on how much the instrument correlates with the

(leads and lags of the) contaminating shock as compared to the shock of interest – i.e.

on the ratios βk
α
. Second, the bias depends on the number of lags that are common to

those contaminating the instrument (Eq. 26) and those that appear in the Blaschke

polynomial b(2)(L). Finally, and importantly, the bias depends on the relative order
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of magnitude of the coefficients b(2)
j,�1

as compared to b(1). These relate to the variance

of variable i that is accounted for by the shock of interest and the contaminating

shocks. For example, very small values of b(2)
j,�1

relative to b(1) imply that shock �1

explains very little of the variation in variable i, and hence the distortion is likely to

be small. While the contamination of the instrument biases both the impact and the

dynamic responses, in the next section we discuss how under partial invertibility, the

impact effects of the shock of interest can be correctly recovered also in misspecified

VARs, as long as Condition (iii) holds.

5 An Observation on VAR Misspecifications

Let us consider a purely nondeterministic, stationary VARMA(p,q) process Yt =

(y′1,t y
′
2,t)
′

Φ11(L) Φ12(L)

Φ21(L) Φ22(L)

y1,t
y2,t

 =

Ψ11(L) Ψ12(L)

Ψ21(L) Ψ22(L)

u1,t
u2,t

 . (32)

Fitting a VAR(k) to y1,t corresponds to imposing some or all of the following restric-

tions

Φ11,i = 0, i = k + 1, k + 2, . . . p, (33)

Φ12,i = 0, i = 1, 2, . . . p, (34)

Ψ11,i = 0, i = 1, 2, . . . q, (35)

Ψ12,i = 0, i = 1, 2, . . . q. (36)

Let us consider the case in which only some of these restrictions are not reflected in the

data generating process. The first restriction (conditional on the others being true)

corresponds to understating the VAR lag order with k < p. The second restriction

would instead imply the exclusion of relevant variables. This is also a trivial case
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of non-invertibility due to the number of variables being smaller than the number of

shocks. Finally, the last two restrictions correspond to disregarding the MA structure

of the process. Braun and Mittnik (1993) discuss and quantify the asymptotic biases

resulting from these misspecifications.

We now consider what these misspecifications imply for the identification of a

shock of interest uit, under the assumption of partial invertibility. Let us assume that

a condition of partial invertibility for uit on the subvector y1,t holds, i.e.

uit = Proj(uit|y1,t, y1,t−1, . . . ) . (37)

This condition guarantees that uit can be obtained as linear projection of y1,t onto its

lags (potentially infinitely many).

Let us now consider the case of a too short lag order. In this case, the autoregres-

sive coefficients would be biased and inconsistent. However, if the system contains

sufficiently many lags to fulfil the partial invertibility condition in Eq. (37), then

identification is still obtained. Hence, while impact responses of the variables to the

shocks of interest are correctly estimated, their dynamics are distorted even asymp-

totically. Exactly the same logic applies to the case of a misspecified moving average

component, that can always be mapped into a VAR with infinitely many lags. It

is worth observing that while in the first case more lags trivially resolve the issue,

in the second case longer lags only asymptotically approximate the correct Wold

representation.

Consider now the case of omitted variables. Also in this case, if partial invertibility

in Eq. (37) for the subset of variables y1,t holds, then impact coefficients are correctly

retrieved while the IRFs are be distorted. However, interestingly, also in this case

longer lags would asymptotically capture the correct dynamics of the system. To see

this, consider the following. The Wold Representation Theorem implies that also y1,t

has an invertible MA representation. For the n1-dimensional subprocess y1,t = JYt,
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where Jt = (In1 0n−n1) is a selector matrix, we can write

Φ11(L)y1,t = −Φ12(L)y2,t + Ψ1(L)ut . (38)

If Yt is covariance-stationary, y1,t is also covariance stationary, with first and second

moments respectively equal to E(y1,t) = JE(Yt), and Γy1(h) = JΓY (h)J ′, where

Γ(h) is the autocovariance of Yt at lag h. The Wold Representation Theorem also

guarantees the existence of an ARMA representation of the form

Φ̃1(L)y1,t = Ψ̃1(L)ν1,t . (39)

The true innovations ut are trivially non-invertible in y1,t. In fact, the n innovations

ut are compounded and reduced to the n1 < n innovations ν1,t which do not have

a meaningful structural interpretation. If system is partially invertible in y1,t then

impact of the shock of interest are correctly estimated, moreover the existence of a

Wold representation guarantees that the dynamics of the system is asymptotically

approximated by infinitely many lags of y1,t only.

While in all of the cases discussed VARs can only asymptotical approximate the

true dynamics of the system, direct methods à la Jordà (2005) with controls can be

used to improve over VAR estimates.

Interestingly, these observations provide a simple way to gauge the contamination

of an instrument versus the misspecification of the model adopted – two dimensions

along which structural identification may be problematic and deliver unstable results.

In fact, if one can assume partial invertibility across different specifications of an

empirical model, an instrument fulfilling the conditions for identification would deliver

stable impact responses but unstable IRFs across models. In this case, increasing

the number of lags and/or selectively adding variables that may be of importance

for the transmission of the shock should help stabilise the dynamics response. The

intuition for this is that additional controls may be important for the transmission
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of the structural shocks (see discussion in Caldara and Herbst, 2018). Conversely,

an instrument that violates the lead-lag exogeneity conditions is likely to deliver also

unstable impact response across different models.10 We provide empirical support to

these remarks in the following sections.

6 Partial Invertibility in a Simulated System

We simulate data from a stylised New Keynesian DSGE model that features (i) a rep-

resentative infinitely-lived household that chooses between consumption and leisure;

(ii) firms that produce a continuum of goods using a Cobb-Douglas technology to

aggregate capital and labour; (iii) a government that consumes a share of output for

wasteful public spending; and (iv) a central bank that sets the interest rate using

a Taylor rule with smoothing. There are four stochastic disturbances that gener-

ate fluctuations in the economy, namely, a monetary policy shock urt , a government

spending shock ugt , a technology shock uat , and an inflation-specific shock uπt .

The processes for technology, spending, prices, and the policy rate are defined as

follows. Log technology at evolves with a news component as

at = ρa at−1 + ωuat−4 , (40)

where uat is an i.i.d. normally distributed technology shock. Similarly, an element of

fiscal foresight characterises the spending process gt, that evolves according to

gt = ρg gt−1 + ugt−4 , (41)

where ugt is an i.i.d. normally distributed spending shock. The monetary authority
10In this case, a much larger information set can help resolving the issue. The intuition for this is

that structural shocks are likely to be fundamental and partially invertible in larger models, and can
hence improve the performance of contaminated instruments. (see Giannone and Reichlin, 2006).
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sets the nominal interest rate using a Taylor rule with smoothing

rt = ρr rt−1 + (1− ρr)
(
φππt + φy∆yt

)
+ urt , (42)

where πt is the average inflation over the last four periods, ∆yt is the average growth

rate of output, and urt is a white noise i.i.d. normally distributed monetary policy

shock. Finally, price dynamics are governed by a New Keynesian Phillips Curve, as

follows

πt = γππt−1 + βEtπt+1 +
(1− θπ)(1− θπβ)

θπ
mct + uπt , (43)

wheremct are marginal costs, and uπt is an i.i.d. normally distributed inflation-specific

shock. All the model details, including the calibrated parameters, are reported in

Appendix A.

We consider a VAR(4) in the policy rate, inflation, output, and spending. Under

the chosen set of parameters, the model fails the ‘poor man’s invertibility condition’

of Fernandez-Villaverde et al. (2007), hence, the four structural shocks cannot all be

recovered from a VAR in the observables. However, the specification of the Taylor rule

ensures the monetary policy shock is partially invertible from a VAR(4) in [rt, πt, yt]
′.

Figure 1 reports the degree of invertibility δu of each of the structural shocks

in the model. From the model, we simulate 5,000 economies each of sample size

T = 300 periods. For each set of simulated data, we then estimate a VAR(4) in

the four observables (output growth, inflation, government spending and the policy

interest rate) and calculate the degree of invertibility of each of the four shocks as in

Forni et al. (2018)

δu = var[uit − Proj(uit|HY
t )]/σ2

ui
, (44)

where σ2
ui

denotes the variance of the shock of interest. Hence, δu is a measure of

the unexplained variance of the orthogonal projection of each of the structural shocks

onto the VAR residuals. A value of 0 implies that the shock is recoverable from the

VAR, whereas increasing values of δu imply non-fundamentalness and an increasing
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Figure 1: Degree of Invertibility of the Structural Shocks
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Note: Distribution of δu across 5000 simulated economies. δu = 0 denotes invertibility; δu = 1
denotes insufficient information for shocks recoverability. VAR(4).

Table 1: Variance Decomposition

urt uat ugt uπt

output yt 16.5 75.56 0.38 12.71
spending gt 0.00 0.00 68.09 0.00
inflation πt 9.05 51.23 0.03 66.89
policy rate rt 25.96 20.31 0.04 14.84

Note: Share of variance accounted for by each shock. Numbers may not add up to 100 due to
non-zero correlation of simulated shocks in small samples.

degree of non-recoverability. Across simulations, the distribution of δu for technology

and spending is strongly concentrated towards the upper bound of 1, confirming the

inability of the VAR to recover these two shocks. Similarly, the inflation shock is

also non-invertible, but with a higher degree of recoverability. The four shocks play a

different role in driving economic fluctuations in the model. Table 1 reports the share

of variance of the four observables that is accounted for by each of the four shocks in

the model. We note that the government spending shock plays a negligible role.

We now use the same set of VAR(4) on the simulated data to identify the monetary

policy shock using the following four different external instruments:
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z0,t = urt , (45)

z1,t = 0.7urt − 0.5urt−2 + ςt , (46)

z2,t = 0.7urt − 0.5
(
ugt−1 + ugt−2 + ugt−3

)
+ ςt , (47)

z3,t = 0.7urt + 0.5
(
uat−1 + uat−2 + uat−3

)
+ ςt . (48)

In Eq. (45) the shock is perfectly observable. This is the case discussed in Stock

and Watson (2018). The instrument in Eq. (46) is an instrument contaminated

by classic white noise measurement error, and the second lag of the monetary policy

shock. The instruments in Eqs. (47-48) both fail the lead-lag exogeneity condition. In

fact, while z2,t is contaminated by lagged spending shocks, z3,t correlates with lagged

technology shocks. In all cases, ςt is a normally distributed random measurement

error with zero mean and variance equal to that of the structural shocks. A VAR(4)

allows for partial invertibility and also captures the model’s dynamics sufficiently

well. Hence, we use p = 4 as the benchmark case.11

Impact responses for output and inflation recovered from the four instruments

and a VAR(4) are in Figure 2.12 In each subplot, we use blue circles for the model’s

responses (true), orange squares for the median across simulations, and green triangles

for the simulation which is the closest to the median (best).13 The error bars are two

standard deviations intervals constructed from the distribution across simulations. A

few elements are worth highlighting. As also noted in Stock and Watson (2018), when

the shock is observable (z0,t), the assumption of full invertibility can be dispensed with

for the validity of SVAR-IV. However, the shock is correctly recovered also under the

milder conditions introduced in Section 4. In fact, correct impact responses are

recovered also with z1,t. The introduction of a measurement error in z1,t widens the
11In the Appendix we also report the extreme cases of p = 1 and p = 2 where the model is more

severely misspecified and the identification becomes more challenging.
12IRFs are normalised such that the impact response of the policy rate to a monetary policy shock

equals that of the model.
13We select the simulation whose IRFs minimise the sum of square deviations from median IRFs

over the first 12 periods. The choice allows to put more weight at shorter horizons where responses
display richer dynamics. Changing the truncation horizon yields qualitatively similar results.
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Figure 2: Impact Responses to Monetary Policy Shock
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Note: Impact responses to monetary policy shock from partially-invertible DSGE identified with
external instruments and estimated with a VAR(4) in four observables. z0,t: observed shock case;
z1,t: instrument correlates with monetary policy shock only; z2,t: instrument also correlates with
past spending shocks; z3,t instrument correlates also with past technology shocks. Grey vertical
lines are 2 standard deviations error bards from the distribution of impact responses across 5,000
simulated economies of sample size T = 300 periods. True impact (blue circle), median across
simulations (orange square), minimum distance from median (best) simulation (green triangle).

distribution of impact responses across simulations, but recovers the correct impact

effects. The picture changes substantially when we consider the case of z3,t. In this

case, the instrument correlates with lagged non-invertible technology shocks which

the data in the VAR cannot provide sufficient information for by construction. This

results in severely biased impact responses. An interesting case arises when the

instrument also correlates with lagged spending shocks (z2,t). The spending shock

is not invertible in the system, however, as noted, it is responsible for a negligible

share of the variance of the simulated variables. In this case the contamination is

ineffective, and impact responses are correctly recovered.

The discussion extends in an equivalent way to responses at farther away horizons.

Figure 3 reports responses estimated over 48 periods using z1,t (Panel A, top), z2,t

(Panel B, centre), and z3,t (Panel C, bottom). In the first two cases the model

responses lie within the bands generated across the simulations. On the contrary, the

response of all variables are outside the simulation confidence region when the shock

is identified using z3,t.
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Figure 3: Responses to Monetary Policy Shock – Simulation
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(a) z1,t: external instrument correlates with monetary policy shock only
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(b) z2,t: external instrument also correlates with lagged spending shocks
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(c) z3,t: external instrument also correlates with lagged technology shocks

Notes: Impulse responses to monetary policy shock from partially-invertible DSGE identified with
external instruments and estimated with a VAR(4) in four observables. Instrument correlates with
monetary policy shock only (Panel A). Instrument correlates with monetary policy shocks and
lagged spending shocks (Panel B). Instrument correlates with monetary policy shocks and lagged
technology shocks (Panel C). Grey shaded areas denote 90th quantiles of the distribution of IRFs
across 5,000 simulated economies of sample size T = 300 periods. Model responses (true, blue
solid), median across simulations (orange dashed), minimum distance from median (best)
simulation (green dash-dotted).
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This exercise shows that in a simulated environment full invertibility is not nec-

essary for the identification of SVAR-IV. Moreover, under partial invertibility of the

shock of interest, the impact responses are correctly estimated provided that the

conditions laid out in Section 3 hold. Finally, when the limited lead-lag exogeneity

condition is violated, the extent of the distortion depends on the share of variance of

the variables that is accounted for by the shock that contaminates the instrument.

7 IV Identification of Monetary Policy Shocks

In this section, we look at the empirical identification of monetary policy shocks and

use the results in the previous sections to shed light on the distortions to the impact

and dynamic responses that arise from either the contamination of the instrument, or

the misspecification of the VAR model. In particular, we consider different potential

instrument for monetary policy shocks, some of which may be contaminated, and

assess dependence of the impact and dynamics responses on different information

sets and/or VAR specifications, some of which are likely to be misspecified.

We consider three external instruments, all of which are constructed from the

high-frequency surprises of Gürkaynak et al. (2005) and measure monetary policy

innovations through the surprise reactions of federal funds futures markets around

FOMC announcements, following the insight of Kuttner (2001). The first of these in-

struments is constructed by measuring high-frequency surprises around all the sched-

uled FOMC meetings between 1990 and 2012. This is equivalent to the instrument

used in e.g. Stock and Watson (2018) and Caldara and Herbst (2018), and we denote

it by zA,t. The second instrument is a monthly moving average of high-frequency sur-

prises around all FOMC announcements from 1990 to 2012. This is the instrument

originally proposed in Gertler and Karadi (2015), denoted zB,t. The third external in-

strument – zC,t – is the residual of a projection of high-frequency surprises around all

FOMC meetings onto their lags and Fed Greenbook forecasts from 1990 to 2009 (see

Miranda-Agrippino and Ricco, 2017). This projection can be seen as a pre-whitening
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Table 2: Contamination of Monetary Policy Instruments

H0 : βf1,t−1
= βf2,t−1

= . . . = βf10,t−1
= 0

zA,t zB,t zC,t

F(10,227) 2.12
(0.0240)

F(10,226) 3.52
(0.0002)

F(10,215) 1.77
(0.0669)

N 239 238 227

Note: Wald test statistics. Regressions include a constant and one lag of the dependent variable.
Sample 1990:2009. p-values in parentheses.

step that removes contamination with other past and contemporaneous shocks related

to the state of the economy, due to the signalling channel of monetary policy.14 All

three instruments are monthly, and use the fourth federal funds futures as underlying

contracts to measure the high-frequency surprises.

Table 2 reports Granger causality tests for the three instruments on the first

ten macroeconomic and financial factors estimated from the monthly dataset in Mc-

Cracken and Ng (2015), that include a constant and one lag of the selected instrument.

The numbers in the table are Wald test statistics for the null that the factors’ coeffi-

cients are jointly equal to zero.15 Results point to possible contamination of the zA,t

and zB,t instruments by lagged macroeconomic shocks, with p-values well beyond the

rejection region. This serves as motivation for our next exercise.

We evaluate the effect of the instruments’ contamination on the estimation of the

IRFs in an empirical setup that encompasses standard monetary VARs such as those

in Coibion (2012) and Gertler and Karadi (2015). Our benchmark VAR is monthly

and estimated with 12 lags from 1979:1 to 2012:12. The variables included are the one-
14The intuition for this is that the policy rate announcements can signal the central bank’s view

about macroeconomic developments to market participants. This implies that market price revisions
incorporate both the monetary policy shocks and the information update about the state of the
economy (see Melosi, 2017 and Miranda-Agrippino and Ricco, 2017).

15Full regression results are reported in the Appendix.
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Figure 4: Impact Responses to Monetary Policy Shocks – 1979:2012
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(a) Baseline VAR
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(b) Misspecified VAR

Notes: Baseline VAR(12) in all variables, top panel (A). Misspecified VAR(2) in three variables,
bottom panel (B). VARs estimated with standard macroeconomic priors. Identification in all cases
uses the full length of the instruments. zA,t: high-frequency surprises at scheduled FOMC
meetings; zB,t: moving average of high-frequency surprises within the month; zC,t: residuals of zA,t
on Fed Greenbook forecasts. Shaded areas denote 90% posterior coverage bands.
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year government bond rate as the policy variable, an index of industrial production,

the unemployment rate, the consumer price index, a commodity price index, and the

excess bond premium (EBP) of Gilchrist and Zakrajšek (2012).16 Stock and Watson

(2018) show that in this system there is no statistically significant evidence against

the null hypothesis of invertibility.17

We also consider a VAR which omits the unemployment rate, the EBP variable,

and the commodity price index, includes only 2 lags, and is hence likely to be mis-

specified. In all cases, we estimate the impact responses from a regression of the VAR

innovations onto one of the above instruments, while IRFs are retrieved from the co-

efficients of the VAR. Responses are normalised such that the policy rate increases

by 1% on impact.

We start by looking at the impact responses retrieved by the three instruments in

the two VARs, reported in Figure 4. The top row collects results for the baseline VAR,

while the misspecified VAR is in the bottom row. Comparing the impact responses

for each given instrument across VARs we note that while zC,t’s impact are stable,

impact responses under either zA,t or zB,t vary and are statistically different. Modal

impact responses of production to a contractionary monetary policy shock go from

being non significant to strongly positive at almost 2% under zB,t, and from -1% to

essentially zero under zA,t. The impact response under zC,t is largely unchanged. The

impact response of prices under zA,t is slightly positive.

We then turn to the full dynamic responses reported in Figure 5. Notwithstanding

the differences in the impact responses just discussed, the responses in the baseline

VAR are qualitatively coherent; all instruments identify a monetary policy shock that

eventually triggers an economic recession, accompanied by a significant contraction in

prices. However, the picture changes quite materially as we move to the misspecified
16Data for bond yields, industrial production, and the consumer price index are from the St Louis

FRED Database, the commodity price index is from the Commodity Research Bureau, the EBP
data are from the Federal Reserve Board.

17Stock andWatson (2018) do not reject the null of invertibility in a system that includes industrial
production, the index of consumer prices, the one year interest rate and the excess bond premium
variable.
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Figure 5: Responses to Monetary Policy Shocks – 1979:2012
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(b) Misspecified VAR

Notes: Baseline VAR(12) in all variables, top panel (A). Misspecified VAR(2) in three variables,
bottom panel (B). VARs estimated with standard macroeconomic priors. Identification in all cases
uses the full length of the instruments. zA,t: sum of high-frequency surprises within the month;
zB,t: moving average of high-frequency surprises within the month; zC,t: residuals of zA,t on Fed
Greenbook forecasts. Shaded areas denote 90% posterior coverage bands.

VAR (bottom row of Figure 5).18

These results suggests that neither zA,t nor zB,t satisfy the limited lead-lag exo-

geneity condition, i.e. they correlate with other shocks, likely related to developments

in financial markets and the real economy, that the trivariate VAR(2) is not able to
18These findings are confirmed across different samples, as we show in the VARs in the Appendix

(Figure B.4) estimated from 1990, date that coincides with the start date of all the instruments
used.
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control for.19,20 Interestingly, dynamic responses obtained with zC,t are largely similar

across the two specifications, pointing to a small degree of model misspecification.

8 Conclusions

This paper provides conditions for identification with external instruments in Struc-

tural VARs under partial invertibility. Partial invertibility is a general and not very

stringent condition that is required when only one or a subset of the structural shocks

in the system are of interest. Results show that SVAR-IV methods (and LP-IV with

controls) allow for identification of the dynamic causal effects of interest under the

standard relevance and contemporaneous exogeneity conditions plus a limited lead-lag

exogeneity condition. The latter implies that the instrument can be contaminated by

other partially invertible shocks (at different lags and leads) and still achieve correct

identification. These conditions are weaker that the standard full invertibility condi-

tion often required for SVAR-IV, or the strong lead-lag exogeneity condition needed

for LP-IV without controls. Hence, they extend the range of empirical settings in

which SVAR-IV and LP-IV with controls can be used. Lastly, we show that identi-

fication of impact effects is possible even in the presence of model misspecification.

In this case, an empirical trade-off between efficiency and accuracy of the impulse

response functions arises and the use of larger information sets or of direct methods

can help producing more robust inference.

19The first factor used in Table 2 is typically regarded as a synthetic measure of real activity, see
e.g. McCracken and Ng (2015). Other than a barometer for financial markets’ health levels, the
EBP has strong predictive powers for an array of measures of economic activity, and its inclusion is
likely to account for other omitted variables too (see e.g. Gilchrist and Zakrajšek, 2012; Gertler and
Karadi, 2015).

20These results are invariant to a number of robustness tests, including on the estimation sample
and the use of scheduled FOMC meetings only, as discussed extensively in Miranda-Agrippino and
Ricco (2017).
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A Model

The economy is populated by a representative infinitely-lived household seeking to

maximise

E0

∞∑
t=0

βtU(Ct, Ht) , (A.1)

with a period utility

U(Ct, Ht) =
C1−σ
t

1− σ
− H

1+ 1
ϕ

t

1 + 1
ϕ

, (A.2)

where σ is the risk aversion parameter, ϕ is the Frisch elasticity, and Ht are hours

worked. Ct is a consumption bundle defined as

Ct ≡
(∫ 1

0

Ct(i)
1− 1

ε

) ε
1−ε

, (A.3)

where Ct(i) is the quantity of good i consumed by the household in period t. A con-

tinuum of goods i ∈ [0, 1] exists. The log-linearised households optimality conditions

are given by the Euler equation

ct = E[ct+1]−
1

σ
(rt − E[πt+1]) , (A.4)

and by the labour supply schedule

wt =
1

ϕ
ht + σ ct , (A.5)

where wt is the labour wage on a competitive labour market. Agents maximise their

intertemporal utility subject to a flow budget constraint. Agents can hold bonds or

firms capital, and a no arbitrage condition between bonds and capital holds

1

β
(rt − E[πt+1]) =

1

β − (1− δ)
E[zt+1] , (A.6)
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where δ is the rate of depreciation of capital. Firms produce differentiated goods

j ∈ [0, 1] by using a Cobb-Douglas technology to aggregate capital and labour

Yt(j) = AtKt−1(j)
αHt(j)

1−α (A.7)

where, importantly, log technology at ≡ log(At) has a news component

at = ρa at−1 + ωuat−4 , (A.8)

where uat is an i.i.d. normally distributed technology shock. The static optimality

condition on the production inputs delivers the linearised relation

wt + ht = kt−1 + zt . (A.9)

The log-linearised production function of the firms is

yt = at + αkt−1 + (1− α)ht . (A.10)

Firms set prices in a staggered way à la Calvo (1983) with an indexation mechanisms

of the type proposed by Galì and Gertler (1999). Thus, each period, a measure 1−θ of

firms reset their prices, while prices for a fraction θ of the firms are Pt(j) = Pt−1π
γ
t−1.

θ is an index of price stickiness. The firms that can reset their prices maximise the

expect sum of profits

maxP ∗t (j)

∞∑
τ=0

(βθ)τ
(
P ∗t (j)

(
Pt − 1 + τ

Pt−1

)γ
−MCt+τ

)
Yt+τ (j) , (A.11)

whereMCt are the real marginal costs in period t. The first order conditions from this

problem, combined with the aggregate price equation, form a hybrid New Keynesian
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Phillips Curve

πt = γ πt−1 + βE[πt+1] + λmct , λ ≡ (1− θ) (1− β θ)
θ

+ uπt , (A.12)

where uπt is an i.i.d. normally distributed inflation-specific shock, and marginal costs

evolve as

mct = α zt + (1− α)wt − at . (A.13)

The linearised law of motion for firms capital is

It = Kt+1 − (1− δ)Kt , (A.14)

whereKt is physical capital and It is investment. The log-linearisation of this equation

yields21

it = kt − (1− δ) kt−1 . (A.15)

A fiscal authority absorbs a share of output into wasteful government spending

Gt = (1− ρg)G+ ρgGt−1e
ugt−4 (A.16)

and the log-linearised equation for government spending is

gt = ρg gt−1 + ugt−4 , (A.17)

where ugt is an i.i.d. normally distributed government demand shock. At the steady

state G = gY . A monetary authority sets the nominal interest rate using a monetary

rule with a smoothing term

rt = ρr rt−1 + (1− ρr)
(
φππt + φy∆yt

)
+ urt , (A.18)

21In order to have smoother impulse response functions, without introducing autocorrelation in
the shock processes, we added an ad hoc quadratic adjustment of the form it = kt− (1− δ) kt−1 +

(kt − (1− δ) kt−1)
2.
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Table A.1: Calibrated Parameters

Parameter Value Description

α 0.4 share of capital in output
β 0.99 discount factor
δ 0.025 depreciation of capital
σ 1 risk aversion consumption
ϕ 2 labor disutility
g 0.2 share of public spending in output
θ 0.75 price stickiness
γ 0.2 indexation parameter (NK Phillips curve backward term)
ε 10 substitutability goods
ρr 0.95 monetary policy smoothing
φy 0.5 monetary policy output growth
φr 1.2 monetary policy inflation
ρa 0.5 productivity autocorrelation
ρg 0.95 public spending autocorrelation
ω 3 news multiplier

where πt and ∆yt are, respectively, average inflation and the average rate of output

growth over the last four periods, and urt is a white noise i.i.d. normally distributed

monetary policy shock. Importantly, the monetary policy innovation can be recovered

from current and past values of the policy rate, inflation and output. Finally, the

aggregate economy clears

Y yt = Cct + Iit +Ggt . (A.19)

Table A.1 reports the calibration for this benchmark NK model. For this set

of parameters the model fails the ‘poor man’s invertibility condition’ of Fernandez-

Villaverde et al. (2007).
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B Additional Charts & Tables

Figure B.1: Responses to MP Shock – Simulation & VAR(1)
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(a) Impact Responses: All Instruments

Note: Impact responses to monetary policy shock from partially-invertible DSGE identified with
external instruments and estimated with a VAR(1) in four observables. z0,t: observed shock case;
z1,t: instrument correlates with monetary policy shock only; z2,t: instrument also correlates with
past spending shocks; z3,t instrument correlates also with past technology shocks. Grey vertical
lines are 2 standard deviations error bards from the distribution of impact responses across 5,000
simulated economies of sample size T = 300 periods. True impact (blue circle), median across
simulations (orange square), minimum distance from median (best) simulation (green triangle).
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(b) z1,t: external instrument correlates with monetary policy shock only

Notes: Impulse responses to monetary policy shock from partially-invertible DSGE identified with
external instruments and estimated with a VAR(1) in four observables. Instrument correlates with
monetary policy shocks only. Grey shaded areas denote 90th quantiles of the distribution of IRFs
across 5,000 simulated economies of sample size T = 300 periods. Model responses (true, blue
solid), median across simulations (orange dashed), minimum distance from median (best)
simulation (green dash-dotted).
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Figure B.2: Responses to MP Shock – Simulation & VAR(2)
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(a) Impact Responses: All Instruments

Note: Impact responses to monetary policy shock from partially-invertible DSGE identified with
external instruments and estimated with a VAR(2) in four observables. z0,t: observed shock case;
z1,t: instrument correlates with monetary policy shock only; z2,t: instrument also correlates with
past spending shocks; z3,t instrument correlates also with past technology shocks. Grey vertical
lines are 2 standard deviations error bards from the distribution of impact responses across 5,000
simulated economies of sample size T = 300 periods. True impact (blue circle), median across
simulations (orange square), minimum distance from median (best) simulation (green triangle).
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(b) z1,t: external instrument correlates with monetary policy shock only

Notes: Impulse responses to monetary policy shock from partially-invertible DSGE identified with
external instruments and estimated with a VAR(2) in four observables. Instrument correlates with
monetary policy shocks only. Grey shaded areas denote 90th quantiles of the distribution of IRFs
across 5,000 simulated economies of sample size T = 300 periods. Model responses (true, blue
solid), median across simulations (orange dashed), minimum distance from median (best)
simulation (green dash-dotted).
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Table B.1: Contamination of Monetary Policy Instruments

zA,t zB,t zC,t

f1,t−1 -0.007** -0.011*** 0.002
(0.003) (0.004) (0.005)

f2,t−1 0.000 0.004* 0.001
(0.002) (0.002) (0.002)

f3,t−1 0.003 -0.001 0.004
(0.004) (0.004) (0.005)

f4,t−1 0.008** 0.008* 0.011*
(0.004) (0.004) (0.006)

f5,t−1 -0.005 0.000 0.003
(0.004) (0.005) (0.006)

f6,t−1 -0.009*** -0.007*** -0.011**
(0.003) (0.003) (0.005)

f7,t−1 -0.009** -0.006 -0.002
(0.004) (0.004) (0.006)

f8,t−1 -0.002 0.001 0.000
(0.002) (0.003) (0.003)

f9,t−1 -0.001 -0.002 0.000
(0.003) (0.004) (0.004)

f10,t−1 -0.001 0.000 -0.001
(0.003) (0.004) (0.004)

zA,t−1 -0.184***
(0.052)

zB,t−1 0.204**
(0.101)

zA,t−1 -0.009
(0.075)

constant -0.006** -0.011*** -0.000
(0.003) (0.003) (0.004)

R2 0.097 0.140 0.042
F 2.363 3.616 1.650
F 0.009 0.000 0.087
N 239 238 227

Note: Regressions include a constant and 12 lags of the dependent variable. * p < 0.1, ** p < 0.05,
*** p < 0.01, robust standard errors.
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Figure B.3: Impact Responses to Monetary Policy Shocks – 1990:2012
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(a) Baseline VAR

IP CPI 1YR

%
 
p
o
i
n
t
s

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

z
A,t

IP CPI 1YR
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

z
B,t

IP CPI 1YR
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

z
C,t

(b) Misspecified VAR

Notes: Baseline VAR(12) in all variables, top panel (A). Misspecified VAR(2) in three variables,
bottom panel (B). VARs estimated with standard macroeconomic priors. Identification in all cases
uses the full length of the instruments. zA,t: high-frequency surprises at scheduled FOMC
meetings; zB,t: moving average of high-frequency surprises within the month; zC,t: residuals of zA,t
on Fed Greenbook forecasts. Shaded areas denote 90% posterior coverage bands.
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Figure B.4: Responses to Monetary Policy Shocks – 1990:2012
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(a) Baseline VAR
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(b) Misspecified VAR

Notes: Baseline: VAR(12) in all variables. Misspecified: VAR(2) in three variables. VARs
estimated with standard macroeconomic priors. Identification in all cases uses the full length of
the instruments. zA,t: sum of high-frequency surprises within the month; zB,t: moving average of
high-frequency surprises within the month; zC,t: residuals of zA,t on Fed Greenbook forecasts.
Shaded areas denote 90% posterior coverage bands.
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